

Modelación de la función de distribución de frecuencias de los caudales máximos en la cuenca del río caroní

Edilberto Guevara Pérez y Laura Albano

Escuela de Ingeniería Civil, Universidad de Carabobo, Venezuela E-mail: eguevara@uc.edu.ve; albanolaura2000@yahoo.es

Resumen

El análisis de frecuencia de los caudales máximos requiere de la disponibilidad de períodos de registros largos, no disponibles en la mayoría de los ríos de Venezuela; sin embargo, la red hidrométrica implementada por la compañía Electrificación del Caroní (EDELCA) en la cuenca del mismo nombre, dispone de un registro continuo de los caudales diarios, en algunos casos, mayores de 50 años, lo cual permite desarrollar modelos para el análisis de caudales de esta cuenca, y extrapolar los resultados a otras regiones de Venezuela Para el análisis de frecuencia se utilizaron los modelos probabilísticas Normal, Log-Normal, Gumbel I, Pearson III y Log-Pearson III y las series anuales de caudales diarios máximos de ocho (8) estaciones hidrométricas. Se usó el método de la crecida índice para comprobar la homogeneidad hidrológica de la región, habiéndose obtenido la relación $Q_{2,33} = 31 + 0.16$ A, con r = 0.982, para estimar la magnitud $Q_{2,33}$, y la siguiente curva de frecuencias compuesta: $(T, Q_T/Q_{2,33})$: (5, 1.11; 10, 1.19; 20, 1.28; 50, 1.39; 100, 1.49); T en años, A en Km² y $Q_{2,33}$, en m³/s). Los resultados obtenidos del análisis de frecuencia, basados en la prueba de Chi-Cuadrado, coeficiente de correlación y error estándar, indican que todos los modelos se adaptan al análisis; sin embargo, se recomienda utilizar como modelo estándar la función Gumbel I.

Palabras clave: Análisis de frecuencia, caudales máximos, modelos probabilísticos, análisis hidrológico regional, homogenización hidrológica.

Modelling of the frecuency distribution function for maximum flows in Caroni basin

Abstract

Frequency analysis of peak flows requires records of long periods, not available in most rivers of Venezuela. EDELCA (Electrificación del Caroní) nevertheless, has been collecting continuously flow data for more than 50 years in some cases, allowing the development of models for this watershed, and the extrapolation of the results to areas of the country with less basic information. Probabilistic models Normal, Log-Normal, Gumbel I, Pearson III and Log-Pearson III were applied for frequency analysis using the annual series of maximum daily flows of eight (8) gauging stations. The Index Flow Method was used to probe the hydrological homogeneity, obtaining the relation $Q_{2,33} = 31 + 0.16$ A (r = 0.982; A in Km² and $Q_{2.33}$ in m³/s) to estimate $Q_{2,33}$, and following compose frequency curve: (T, $Q_T/Q_{2,33}$): (5, 1.11; 10, 1.19; 20, 1.28; 50, 1.39; 100, 1.49); T in years. Based on Chi-Square Test, correlation coefficient and standard error of estimate, all applied models adjust well to observation maximum daily flows in Caroní basin; nevertheless, Gumbel I distribution could be selected as standard method for the region.

Key words: Frequency analysis, maximum flows, probabilistic models, regional analysis, hydrological homogeneity.

1. INTRODUCCIÓN

El análisis de frecuencia de los caudales máximos se utiliza para determinar los parámetros de diseño de las estructuras hidráulicas; pero también para estudiar los ambientales de los desbordamientos ocasionados por las crecientes afectando la economía de las planicies de inundación. Este tipo de análisis requiere de la disponibilidad de períodos de registros relativamente largos, no disponibles en la mayoría de los ríos de Venezuela. Sin embargo, la red hidrométrica

implementada por la compañía Electrificación del Caroní (EDELCA) en la cuenca del mismo nombre, dispone de registros continuos de los caudales diarios, en algunos casos, desde 1950. Esta situación de disponibilidad de información consistente y a largo plazo se utiliza para desarrollar la presente investigación y evaluar la aplicabilidad de los modelos probabilísticas para analizar el comportamiento de los caudales máximos en dicha cuenca y utilizar los resultados para llevar a cabo extrapolaciones a otras regiones de Venezuela con menor información o carente de ella.

En consecuencia, la investigación se centra en el análisis de homogeneidad hidrológica y la aplicación de modelos probabilísticas para el análisis de frecuencia de los caudales máximos en la cuenca del Caroní, utilizando los registros históricos de caudales diarios en ocho (8) estaciones hidrométricas. La investigación permite analizar la aplicabilidad de los modelos probabilísticos para modelar la función de distribución de frecuencias (FDF) de los caudales máximos en la cuenca del Río Caroní, previa evaluación de la homogeneidad hidrológica de la región.

2. FUNDAMENTOS TEÓRICOS

2.1. Modelos probabilísticas teóricos para las Funciones de Distribución de Frecuencia

En esta sección se presenta un resumen de los modelos probabilísticas, en una extensión tal que sirva para entender su aplicabilidad en la zona de estudio. Mayores detalles se encuentran en referencias técnicas, como Kite (1972), Benjamín y Cornell (1970), Chow, 1964, Maidment, 1992, Guevara y Cartaya, 2004; Guevara (2006); Yevjevich, 1972, 1976.

Distribución Normal de Gauss-Laplace

Si bien, los fenómenos hidrológicos no poseen una **FDF** simétrica, la distribución normal tiene mucha importancia en el análisis de frecuencia debido a que de ella se derivan muchas otras funciones.

La **FDF** normal posee la siguiente estructura matemática:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
 (1)

Donde: x es la variable de la serie; μ el promedio aritmético; y σ la desviación estándar.

La distribución normal queda definida mediante los parámetros μ y σ ; el primero es una medida de la tendencia central y el segundo, de la variabilidad de la serie. Debido a que ambos parámetros toman un infinito número de valores, hay que transformar la distribución

usando la variable reducida $t = \frac{x - \mu}{\sigma}$, con lo cual, la

función se transforma como sigue, con $\mu = 0$ y σ

$$F(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-t^2} / 2dt$$
 (2)

Los valores de t se encuentran tabulados en diferentes textos estándares de hidrología y estadística, tal como Guevara (2006), Chow (1964), Maidment et all. (1992), Benjamín y Cornell, (1970).

Distribución de Log. Normal de Galton

La FDF de Galton asume una distribución más o menos normal de los logaritmos de la variable x; posee la siguiente estructura matemática:

$$F(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{Z} e^{-z^2} dz \tag{3}$$

Donde $Z = Log (x-x_o) + b$; siendo a, x_o y b parámetros de la función. Reemplazando la variable x por la variable transformada y = Log.x (y viene a ser una variable auxiliar) se obtiene la siguiente expresión:

$$F(y) = \frac{1}{\sigma_{v} \sqrt{2\pi}} \int_{-\infty}^{y} e^{-\frac{(y - \mu_{v})^{2}}{2\sigma_{y}}} dy$$
 (4)

 μ_y y σ_y son los parámetros estadísticos de la variable auxiliar y = Log x.

Función de Distribución de Valores Extremos Tipo I de Gumbel

De las tres funciones asintóticas desarrolladas por Gumbel (1958), generalmente se usa la Tipo I para el análisis de caudales máximos, bajo el nombre de "Función Gumbel", la cual posee la siguiente estructura matemática:

$$F(x) = e^{-e^{a(x-x_o)}}$$
(5)

Tanto a como x_o son parámetros de la función.

Para el caso de series infinitamente grandes, los parámetros a y x_o se estiman como sigue:

$$\frac{1}{a} = \frac{\sqrt{6}}{\pi} \sigma = 0.780 \sigma$$

$$x_o = \mu - \frac{\gamma}{a} = \mu - \frac{0.577}{a}$$
(6)

 μ y σ son los parámetros estadísticos de la serie; γ = 0.577 (constante de Euler). Estos parámetros también se pueden estimar en función de σ, como sigue:

$$x_o = \mu - 0.55 \,\sigma \qquad a = 1.2825/\,\sigma$$
 (7)

Para series cortas (limitadas) los parámetros se calculan como sigue:

$$x_o = u - \overline{Y}_N / \sigma_N$$

$$a = \sigma_{N/\sigma}$$
(8)

Los parámetros \overline{Y}_N y σ_N dependen sólo del número de años de observación y se encuentran en tablas o gráficos en textos estándares de hidrología (Ejemplo Guevara y Cartaza, 2004; Gumbel, 1958).

Utilizando la transformación $Y = a(x - x_0) y$ reemplazando en esta expresión los valores de a y x_0 dados anteriormente se obtiene:

$$x = \mu + \frac{\sigma}{\sigma_N} (Y - \overline{Y}_N) \tag{9}$$

Función de Distribución de Frecuencias de Pearson Tipo III- Foster

El modelo probabilística de Foster se basa en la función teórica tipo "Gamma" de Pearson y fue adaptada para el análisis de problemas hidrológicos (Benson, 1960, 1968). La **FDP**(función de densidad de probabilidades) de esta FDF posee la siguiente estructura matemática:

$$f(x) = y_o^{-bx} \cdot (1 + x/a)^{ab}$$
 (10)

 y_o , a y b son parámetros de la función. La función posee un máximo y_o para x=0 y un valor de cero para x=-a; es decir, a una distancia –a por debajo del máximo. Los parámetros a y b se estiman como sigue:

$$a = \frac{2\sigma^4}{\gamma} - \frac{\gamma}{2\sigma^2}$$

$$b = \frac{2\sigma^4}{\gamma}$$
(11)

Donde σ y y vienen a ser la desviación estándar y la inclinación (asimetría) de la serie de datos observados. El parámetro y₀ posee la siguiente expresión matemática:

$$y_o = \frac{b}{\gamma(ab+1)} \cdot \frac{(ab)^{ab}}{e^{ab}} \int_{-\infty}^{+\infty} y dx$$
 (12)

El área bajo la integral $\int_{-\infty}^{+\infty} y dx$ se toma generalmente

igual a la unidad. La función y = f(x) no es integrable en forma directa; la integración se lleva acabo mediante aproximaciones. Valores de la integración se encuentran tabulados en función del parámetro γ .

Función de Distribución de Frecuencias Log Pearson Tipo III

Esta función fue introducida por el Water Resources Council en los Estados Unidos (USWRC, 1967) como un método estándar para el cálculo de caudales máximos. La función de distribución es la misma que para la de Foster dada anteriormente, con la diferencia de que en vez de usar la variable x se usa la variable transformada y = Log x. En consecuencia se usan también los parámetros estadísticos de y.

3. METODOLOGÍA

La investigación se llevó a cabo siguiendo el procedimiento que se describe a continuación:

Descripción del área de estudio: El área de estudio está constituida por la Cuenca del Río Caroní, la cual se ubica en el sector sur-oriental de la República Bolivariana de Venezuela, en el Estado Bolívar en la denominada Región Guayana, con una localización geográfica que se extiende desde su punto más septentrional a los 3º 37′ de latitud norte en los límites con Brasil, en la Sierra Pacaraima, hasta su punto más meridional en los 8º 21′ de latitud norte en la desembocadura del río Caroní en el río Orinoco. La cuenca posee una extensión de unos 96.000 Km² (Albano, 2006; Albano y Guevara, 2006)

Diagnostico de la información básica y de la situación de la Cuenca: En el caso de Venezuela todos los años ocurren tragedias, pérdidas materiales y humanas debido a las inundaciones. Por eso, las investigaciones sobre los períodos húmedos y los caudales extremos máximos son

de gran interés. La base de datos hidrológicos, así como la información geomorfológica de la cuenca del Río Caroní, fue suministrada por el Departamento de Registros de EDELCA. La red de medición hidrometeorológica está conformada por estaciones principales que proporciona la base de información para las operaciones básicas de CVG-EDELCA; estaciones secundarias que sirven de apoyo a las principales; y estaciones especiales para determinados proyectos como microcentrales y diseños o estudios particulares. En esta investigación sólo se usan los datos hidrométricos de las Sub cuencas indicadas en la Tabla 1 (Albano, 2006). El periodo de registro no es homogéneo en las estaciones; siendo la del Caroní en Gurí la que posee mayor número de datos (55 años). Para establecer las series sólo se tomaron los años con registros completos.

Extensión de Registro: Con la finalidad de lograr un período común de datos en todas las estaciones hidrométricas, se extienden por regresión los registros

hidrométricos de cada estación en función de los registros correspondientes a la estación Gurí. Para la correlación se utilizan los modelos matemáticos Lineal Simple: y = a + bx; Relación Potencial: $y = ax^b$; Transformada Logarítmica: log(y) = log(a) + b log(x); Relación Exponencial: $y = a e^x$; Relación Polinomial: $y = a_0 + a_1x + a_2x + a_3x + a_4x + a_5x +$ a₂x². Para cada modelo de correlación se utilizaron tres (3) sistemas de variables, establecidos sobre la base de los datos observados: M1, variables (x, y), constituidas por los caudales de la estación Gurí como variable independiente (x) y los correspondientes a las otras estaciones como variables dependientes (y); variables (x_a, y_a), constituidas por la diferencia entre los caudales máximos de la estación Gurí y los correspondientes las otras estaciones; M3, variables (x_A, y_A), constituidas por el producto de los caudales de cada estación y la relación entre el área Ai correspondiente a cada estación hidrométrica y el área Ax correspondiente a la estación Gurí. (Ai/Ax). Para la extensión de las series se utilizó el modelo de correlación de mejor ajuste.

Tabla 1. Características de las Subcuencas cuyos registros hidrométricos se han utilizado para el estudio.

·				~	rarometreos se nan atmizado para er estadio.
Nº	Nombre de	Áreas	Período de	Nº de	Sistema de Drenaje
11	Subcuenca	KM ²	registro	Años	Sistema de Dienaje
1	Caroní en Guri (San Pedro de las Bocas)	80432	1950-2004	55	Pao, Paragua, Aza, Chiguao, Oris, Antabare, Cucurital, Parupa, Caroní, Urimán, Carrao, Churún, Akanán, Aureme, Tirica, Apacará, Apreme, Parkupi, Icabarú, Uaiparú, Karuay, Aponwao, Yuruaní, Kukenán, Arabopó, Uairén, Surucún, Tonoro, Carapo, Marik, Curutú, Ichún, Paragua, Karún, Antabarí.
2	Caroní en Arekuna	41570	1966-2004	39	Antabare, Cucurital, Parupa, Caroní, Urimán, Carrao, Churún, Akanán, Aureme, Tirica, Apacará, Apreme, Parkupi, Icabarú, Uaiparú, Karuay, Aponwao, Yuruaní, Kukenán, Arabopó, Uairén y Surucún.
3	Paragua en Auraima	29095	1976-2004	29	Tonoro, Carapo, Marik, Curutú, Ichún, Paragua, Karún, Antabarí.
4	Caroní en Aripichi	23901	1980-2004	25	Apreme, Parkupi, Icabarú, Uaiparú, Karuay, Aponwao, Yuruaní, Kukenán, Arabopó, Uairén y Surucún.
5	Capaura	30760	1980-2004	25	Aureme, Tirica, Apacará, Apreme, Parkupi, Icabarú, Uaiparú, Karuay, Aponwao, Yuruaní, Kukenán, Arabopó, Uairén y Surucún.
6	Paragua en Karún	22291	1980-2004	25	Marik, Curutú, Ichún, Paragua, Karún, Antabarí.
7	Caroní en Canaima	6890	1981-2004	24	Carrao, Churún, Akanán.
8	Caroní en Karuaiken	15725	1982-2004	23	Karuay, Aponwao, Yuruaní, Kukenán, Arabopó, Uairén y Surucún

La bondad de ajuste de los modelos de correlación se juzga por la magnitud de los coeficientes de correlación obtenidos y mediante el análisis de la longitud efectiva del registro extendido y la denominada "Ganancia de Información" de Langbein, donde la longitud efectiva (Ne) se determinará como sigue (Guevara y Cartaya, 2004):

$$Ne = \frac{N}{1 + \frac{N - K}{K - 2} * (1 - r^2)}$$
 (13)

Donde: N es la longitud del registro mayor (Caroní en Guri); r es el coeficiente de correlación entre ambos registros y K es la longitud del registro corto, el mismo que se extiende por correlación. Si la ganancia es positiva, se puede usar la extensión; de lo contrario, la extensión no aporta información adicional y más bien se pierde precisión.

Aplicación de los modelos probabilísticos: Para aplicar los modelos probabilísticos se utiliza el procedimiento de la denominada "Ecuación General de Frecuencia", debida a Chow (1964), quien ha demostrado que las funciones de frecuencia aplicables al análisis hidrológico pueden linearizarse de la siguiente forma:

$$X_{T} = \mu + \sigma K_{T} \tag{14}$$

La variable X_T es una función lineal de K_T. Esta propiedad es la base principal para la elaboración del papel de probabilidades y ha permitido su uso directo en el análisis de frecuencia de los caudales extremos. K_T es el denominado factor de frecuencia y su valor depende del período de retorno T, del tipo de función y de algún otro parámetro de la serie observada, y normalmente se puede encontrar tabulado o en gráficos en textos de hidrología y estadística, tal como Gumbel (1958); Chow (1964); Maidment et al. (1992); Guevara (2006); y Guevara y Cartaya (2004). Haciendo abstracción del subíndice T, el factor de frecuencia para los modelos probabilísticas descritos se estima como sigue:

1. FDF Normal de Gauss-La Place:

$$K = \frac{x - \mu}{\sigma}$$
; o lo que es lo mismo: $X = \mu + \sigma K$ (15)

2. FDF Log-Normal de Galton:

$$K = \frac{\left(e^{\sigma_y k_y} - \sigma_y^2 / 2\right) - 1}{\left(e^{\sigma_y^2 - 1}\right)^{1/2}};$$
 o también:

$$K_y = \frac{y - \mu_y}{\sigma_y}$$
 (16)

$$y = \mu_y + \sigma_y K_y$$

3. FDF Gumbel Tipo I:

$$K = \frac{\sqrt{6}}{\pi} \left[\gamma + Ln Ln \left(\frac{T}{T-1} \right) \right]; \qquad \text{o también:}$$

$$\gamma = 0.577$$

$$K = \frac{Y - \overline{Y}_N}{\sigma_N}$$

$$X = \mu + \sigma K$$
(17)

4. FDF Tipo III de Pearson- Foster:

$$K = t + (t^{2} - 1)\frac{\gamma_{1}}{6} + \frac{1}{3}(t^{3} - 6t)\left(\frac{\gamma_{1}}{6}\right)^{2} - (t^{2} - 1)\left(\frac{\gamma_{1}}{6}\right)^{3} + t\left(\frac{\gamma_{1}}{6}\right)^{4} + \frac{1}{t}\left(\frac{\gamma_{1}}{6}\right)^{5}$$
(18)

$$X = \mu (C_v K + 1) = \mu + \sigma K \tag{19}$$

5. FDF Log Perason III:

$$X = \mu_v + \sigma_v K$$
; con $X = 10^y$ (20)

Los parámetros estadísticos se calculan como se indica a continuación (Cermeño, 1990):

Media como medida de la tendencia central

$$\bar{Q} = \frac{\sum x_i}{n} \tag{21}$$

Donde: n = número de registros de la estación y $x_i = C$ audal Máximo diario anual

Desviación Estándar como medida de la variabilidad:

$$\sigma = \sqrt{\frac{\left(x_i - \bar{x}\right)^2}{n - 1}} \tag{22}$$

Donde: n = número de registros de la estación,

 x_i = Caudal Máximo anual, x = Caudal medio

 Coeficiente de variación como medida de la variabilidad:

$$Cv = \frac{\sigma}{\bar{Q}} \tag{23}$$

Donde: \overline{Q} = Caudal medio, σ = Desviación estándar.

 Coeficiente de asimetría γ ó Cs como medida de la asimetría:

$$Cs = \frac{n\sum_{i=1}^{n} \left(x_i - \bar{x}\right)^3}{(n-1)(n-2)\sigma^3}$$
 (24)

Donde: σ = Desviación estándar, n = número de registros de la estación, x_i = Caudal Máximo anual, x = Caudal medio.

Análisis de homogeneidad hidrológica

En este trabajo se utiliza para el análisis hidrológico regional el método de la denominada *crecida índice*, el cual requiere primeramente que se lleve a cabo la prueba de homogeneidad hidrológica (Dalrymple, 1960; Benson, 1960, 1968).

A continuación se resume el procedimiento (tomado de Guevara y cartaza, 2004) :

- Se tabulan los datos disponibles dentro de la región, eliminando a priori aquellas estaciones inadecuadas y se selecciona un período común. Se excluven las estaciones con período de registro menor que 5 años y las sometidas a efectos de regulación del caudal aguas arriba. Debido al efecto de periodicidad que llevan en sí los valores de caudal, el período de registro es importante cuando se combinan los valores. Se seleccionar el período base, el cual debe incluir la máxima información posible. Algunos datos faltantes pueden ser llenados mediante correlación entre los registros de estaciones vecinas. Dichos datos no se usan directamente, sino para asignar períodos de retorno representativos a los eventos registrados.
- Ese calcula el período de retorno T para cada registro en cada estación, mediante la relación de Weibull, T = n+1/m; donde: n es el tamaño de la muestra (número de años de registro) y m el orden asignado a cada valor de la serie ordenada de mayor a menor; m = 1 para el evento máximo; m = n para el evento mínimo. Se construye la

curva de frecuencias empírica para cada estación y se extraen de ella los valores de $Q_{2,33}$ y el Q_{10} .

 La homogeneidad hidrológica se comprueba mediante la prueba de Dalrymple basada en el error estándar de los estimados de la variable reducida y de la FDF de valores extremos Tipo I de Gumbel, dado como sigue:

$$2\sigma_{y} = \frac{e^{y}}{\sqrt{n}} \sqrt{1/(T-1)}$$
 (25)

Asumiendo que σ_y se distribuye normalmente, el 95% de los estimados deben estar entre $\pm \sigma_y$ del valor más probable. Tomando T=10 años, se obtiene:

$$2\sigma_{y} = \frac{0.67e^{-y}}{\sqrt{n}} \tag{26}$$

Debido a que para T=10, la variable reducida es y=2,25, los límites de confianza al 95% serán: $2,25\pm6,3/\sqrt{n}$. Utilizando esta última ecuación, se puede construir una tabla y/o un gráfico que muestre los límites de confianza para la homogeneidad (Tabla 2 y Figura 1)

- Se calcula la relación Q₁₀/Q_{2.33} para cada estación y se encuentra el valor medio de dicha relación para la región. Se multiplica la relación media por Q_{2.33} de cada estación para obtener un Q₁₀ teórico modificado. Se encuentra luego el período de retorno de ese Q₁₀ modificado usando la curva de frecuencias individual (T_e). Se determina el período de registro efectivo de cada estación como el número de años de registro, más la mitad del registro rellenado por correlación (N_e).
- Se comparan los pares (T_e vs N_e) con los lí tites dados en la Tabla 2. Los puntos que can fuera de los límites de confidencia indican falta de homogeneidad y la estación correspondiente debe ser excluida de la región y agruparse en otra región.

El procedimiento de regionalización se resume en el establecimiento de dos tipos de relaciones: la primera, muestra la dependencia del caudal Q2,33 con algún parámetro geomorfológico de la cuenca, generalmente el Área A; y la segunda, la denominada curva de frecuencias compuesta o regional, constituida por los pares de valores (T vs Q_T/ Q_{2.33}), para valores deseados de T. Mediante el uso de las dos relaciones establecidas como se indica, se puede calcular la curva de frecuencias para cualquier cuenca que esté dentro de la región y que carece de registros.

Tabla 2. Límites de Confianza para el Análisis de Homogeneidad Hidrológica.

Tamaño de muestra (n)	Υ-2σ _y	Ti	Υ+2σ _y	Ts
5	-0.59	1.2	5.09	160
10	0.25	1.8	4.25	70
20	0.83	2.8	3.67	40
50	1.35	4.4	3.15	24
100	1.62	5.6	2.88	28

5. RESULTADOS

En las Tablas 3, 4 y 5, se presentan los resultados de las correlaciones obtenidas para los tres sistemas de variables utilizadas: M1, M2 y M3.

Tabla 3. Resultados de la correlación obtenida utilizando el sistema de variables M1

Estación	Tendencia Lineal		Tendencia Potencial		Tendencia Logarítmica		Tendencia Exponencial		Tendencia Polinomial	
	\mathbb{R}^2	R	\mathbb{R}^2	R	\mathbb{R}^2	R	\mathbb{R}^2	R	\mathbb{R}^2	R
Caroní en Arekuna	0.780	0.883	0.790	0.8892	0.7902	0.888	0.773	0.8795	0.792	0.8902
Carrao en Canaima	0.155	0.394	0.188	0.4340	0.1508	0.388	0.189	0.4348	0.164	0.4058
Caroní en	0.300	0.548	0.338	0.5818	0.3222	0.567	0.313	0.5596	0.375	0.6131
Capaura	0.654	0.808	0.706	0.8406	0.6787	0.805	0.676	0.8221	0.716	0.8462
Caroní en Aripichi	0.300	0.547	0.370	0.6087	0.3379	0.581	0.327	0.5723	0.527	0.7261
Paragua en Karún	0.594	0.771	0.598	0.7735	0.5966	0.772	0.595	0.7714	0.599	0.7742
Paragua en	0.545	0.738	0.550	0.7420	0.5443	0.737	0.547	0.7399	0.545	0.7384

Tabla 4. Resultados <u>de la correlación obtenida utilizando el sistema de variables M2</u>

	Tendencia Lineal		Tendencia Potencial		Tendencia Logarítmica		Tendencia Exponencial		Tendencia Polinomial	
Estación	\mathbb{R}^2	R	\mathbb{R}^2	R	\mathbb{R}^2	R	\mathbb{R}^2	R	\mathbb{R}^2	R
Acaroní en Arekuna	0,84	0,9165	0,8399	0,9165	0,8227	0,9070	0,8452	0,9193	0,8485	0,9211
Caroní en Canaima	0,971	0,9854	0,9626	0,9811	0,9672	0,9835	0,9561	0,9778	0,9713	0,9855
Caroní en Karuaiken	0,9192	0,9587	0,9181	0,9582	0,9002	0,9488	0,9258	0,9622	0,9297	0,9642
Capaura	0,8196	0,9053	0,8318	0,9120	0,7929	0,8904	0,8478	0,9208	0,8518	0,9229
Caroní en Aripichi	0,8613	0,9281	0,8573	0,9259	0,8281	0,9100	0,8806	0,9384	0,9063	0,9520
Paragua en Karún	0,9434	0,9713	0,9418	0,9705	0,9358	0,9674	0,9356	0,9673	0,9441	0,9716
Paragua en Auraima	0,911	0,9545	0,9144	0,9562	0,9043	0,9509	0,9086	0,9532	0,9111	0,9545

Estación		Tendencia Lineal		Tendencia Potencial		Tendencia Logarítmica		Tendencia Exponencial		Tendencia Polinomial	
	R ² R		\mathbb{R}^2	R	\mathbb{R}^2	R	R ²	R	\mathbb{R}^2	R	
Caroní en Arekuna	0.7809	0.88368	0.7908	0.88926	0.7902	0.88893	0.7736	0.87954	0.7925	0.89022	
Carrao en Canaima	0.1554	0.39421	0.1884	0.43405	0.1508	0.38833	0.1891	0.43486	0.1647	0.40583	
Caroní en Karuaiken	0.3006	0.54827	0.3385	0.58181	0.3222	0.56763	0.3132	0.55964	0.3759	0.61311	
Capaura	0.6544	0.80894	0.7067	0.84065	0.6787	0.80542	0.676	0.82219	0.7161	0.84623	
Caroní en Aripichi	0.3003	0.54799	0.3706	0.60877	0.3379	0.58129	0.3276	0.57236	0.5273	0.72615	
Paragua en Karun	0.5947	0.77116	0.5984	0.77356	0.5966	0.77239	0.5951	0.77143	0.5995	0.77427	
Paragua en Auraima	0.545	0.73824	0.5506	0.74202	0.5443	0.73777	0.5475	0.73993	0.5453	0.73844	

Tabla 5. Resultados de la correlación obtenida utilizando el sistema de variables M3

Observando las magnitudes de los coeficientes de correlación dados en las tablas 3, 4 y 5, se encuentra que dichos coeficientes muestran una gran variabilidad entre estaciones hidrométricas, tanto con los modelos de correlación, como con los sistemas de variables utilizadas en el análisis. Sin embargo, para el sistema de variables M2 (Tabla 4), todos los modelos arrojan coeficientes de correlación mayores que 0.80, indicando un alto grado de correlación. Para el modelo de correlación polinomial, los coeficientes son en todos los casos mayores que 0.92. Por lo tanto se seleccionó este modelo para evaluar la ganancia de información y para la extensión de las series de caudales en las siete estaciones hidrométricas de la cuenca, en función de los del Guri. En la Tabla 6 se dan los resultados obtenidos para la ganancia de información utilizando el modelo de correlación polinomial seleccionado y el sistema de variables M2. Como se puede observar en la Tabla 6, al utilizar los registros de la estación Guri para extender los correspondientes de las otras estaciones mediante el modelo de correlación polinomial y el sistema de variables M2, se gana información en todos los casos. A partir del período base de 55 años correspondiente a la estación Guri, se obtiene para todas las demás estaciones un período efectivo de 50 años. En la mayoría de las estaciones, esto indica que el registro efectivo se duplica, obteniéndose así una buena base de datos para el análisis de frecuencia.

En la Tabla 7 se presentan las series de caudales diarios máximos extendidos por correlación al período común 1950-2004, utilizando el modelo polinomial y el sistema de variables M2. La parte inferior de la Tabla, sombreada en gris, contiene a los valores generados por correlación. Comparando los valores generados por correlación con los valores registrados, no se observan diferencias significativas y las variaciones podrían considerarse como de carácter aleatorio; lo cual es un indicativo de la bondad del modelo de correlación utilizado para la extensión de los registros cortos.

Tabla 6. Resultados obtenidos para la ganancia de información utilizando el modelo de correlación polinomial y el sistema de variables M2

	1	N	N =55 (Hurí)	
ESTACIÓN	K	r2	Ne	G=Ne-K	OBSERVACIONES
Caroní en Arekuna	39	0,8485	51,62	12,62	se gana información
Carrao en Canaima	24	0,9713	52,86	28,86	se gana información
Caroní en Karuaiken	23	0,9297	49,68	26,68	se gana información
Capaura	25	0,8518	46,09	21,09	se gana información
Caroní en Aripichi	25	0,9063	49,01	24,01	se gana información
Paragua en Karun	25	0,9441	51,26	26,26	se gana información
Paragua en Auraima	29	0,9144	50,81	21,81	se gana información

En la Tabla 8 se presentan los parámetros estadísticos de ambos tipos de series: las originales (observadas) y las extendidas por correlación. Observando los valores de la Tabla, no se encuentran diferencias significativas entre los parámetros de ambos tipos de series; por lo que se asume que los modelos utilizados para la extensión son adecuados y que dichos parámetros se pueden considerar representativos para las estaciones utilizadas y constituyen una buena base para el análisis de frecuencia.

En las Tablas 9 y 10 y en la Figura 1 se presentan los resultados del análisis de homogeneidad hidrológica para la región. En la Tabla 9 y la Figura 1, se observa que todos los pares de valores (N_E , T_E) se encuentran dentro de los límites de confianza, indicando que la región es hidrológicamente homogénea: Esta característica permite establecer un modelo regional para el análisis de frecuencia. En la Tabla 10 se presenta los resultados del proceso de estimación de la curva de frecuencias compuesta. A continuación se reproduce dicha curva como pares de valores de T y la relación $Q_T/Q_{2,33}$:

$$(T, Q_T/Q_{2.33}) = (5, 1.1; 10, 1.19; 20, 1.28; 50, 1.39; 100, 1.48)$$
 (26)

Este modelo regional se debe utilizar en conexión con el modelo de regresión encontrado para estimar Q _{2.33} en función del área de la cuenca A, la cual se da a continuación:

$$Q_{2.33} = 31 + 0.16 \text{ A}$$
 ($r = 0.982$; $Q_{2.33}$ en m³/s y A en Km²) (27)

Luego de haber extendido los registros hasta obtener series homogéneas de igual longitud, se llevó a cabo el análisis de frecuencia siguiendo el procedimiento indicado en la metodología.

En la Tabla 11 se presentan los resultados de dicho análisis de frecuencia para las ocho estaciones y los cinco modelos probabilísticas aplicados. Observando los valores resultantes para períodos de retorno predeterminados, se encuentra que para todas las

estaciones dichos valores son similares, lo cual indica que todos los modelos se adaptan para el análisis de frecuencia en la región.

Sin embargo, para confirmar esa acepción se llevó a cabo la prueba χ^2 , calculando el valor de χ^2_c , con la siguiente expresión:

$$\chi_c^2 = \sum_{i=1}^n \frac{(\Delta Q)^2}{Q_{col}}$$
 (28)

Donde ΔQ es la diferencia entre el caudal observado, $Q_{\rm obs}$ y el caudal calculado, $Q_{\rm cal}$. El Valor de χ_c^2 se compara con los valores teóricos para niveles de confidencia predeterminados, 0.01 y 0.05, en este estudio.

El procedimiento consistió en graficar las curvas de frecuencia para cada unos de los modelos probabilísticos aplicados; extraer de dichas curvas los caudales máximos para períodos de retorno de 2.33, 5, 10, 20, y 50 años (valores teóricos); y comparar esos valores con los datos observados para los mismos períodos de retorno. Los resultados de la prueba de ajuste se presentan en la Tabla 12.

A juzgar por la magnitud de los valores, se puede deducir que todos los modelos probabilísticos utilizados se adaptan a los registros observados.

Sin embargo, debido a su menor variabilidad, podría seleccionarse al modelo Gumbel I como método estándar para el análisis de frecuencia de los caudales máximos en la región.

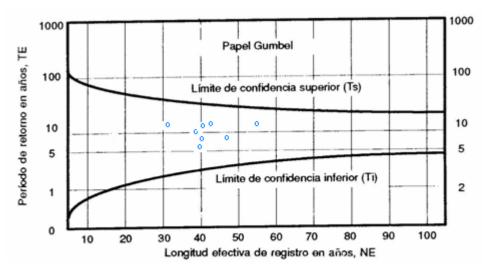

En un estudio similar efectuado para la región centro occidental de Venezuela, Meléndez (1985) llegó a una conclusión similar. A pesar de para el análisis de frecuencia prácticamente se ha generalizado en Venezuela el uso de esta función, es necesario llevar a cabo más investigaciones sobre el particular en aquellas regiones que pudieran disponer de información confiable.

Tabla 7. Series de caudales máximos con un período homogéneo de datos extendidos por correlación para el período 1950-2004.

NT.	1950-200		C ,		C '		<i>C</i> ,	D	D
Número	Años	Caroní	Caroní en	Carrao en	Caroní en	Capaura	Caroní en	Paragua en	Paragua en
de años	111105	en Guri	Arekuna	Canaima	Karuaiken	Сприиги	Aripichi	Karún	Auraima
1	1950	11863	5485	1879	2014	3541	2301	3768	5061
2	1951	12482	5754	1907	2153	3858	2543	3925	5235
3	1952	11888	5496	1880	2020	3555	2312	3775	5068
4	1953	11961	5529	1883	2038	3594	2344	3793	5089
5	1954	12606	5806	1914	2177	3916	2584	3955	5269
6	1955	10729	4930	1843	1680	2841	1679	3461	4728
7	1956	13573	6174	1972	2323	4305	2803	4182	5528
8	1957	16317	6914	2220	2329	4796	2507	4725	6195
9	1958	11476	5304	1864	1912	3320	2115	3666	4950
10	1959	12278	5668	1897	2110	3759	2471	3874	5178
11	1960	11251	5195	1857	1847	3183	1994	3606	4884
12	1961	13345	6092	1957	2295	4223	2766	4131	5468
13	1962	14694	6531	2059	2398	4615	2846	4422	5811
14	1963	13398	6112	1961	2302	4243	2775	4143	5482
15	1964	10630	4878	1841	1646	2773	1613	3433	4698
16	1965	9283	4112	1826	1105	1725	549	3032	4274
17	1966	14224	7054	2020	2379	4503	2855	4325	5694
18	1967	15656	7702	2150	2383	4760	2702	4608	6042
19	1968	13161	6376	1946	2270	4153	2730	4088	5419
20	1969	12212	5834	1894	2096	3725	2446	3857	5160
21	1970	12433	6320	1905	2143	3835	2527	3913	5221
22	1971	13272	7404	1953	2285	4196	2752	4114	5448
23	1972	13545	7306	1933	2320	4295	2799	4176	5520
24	1973	13007	6598	1936	2246	4091	2695	4052	5378
25	1974	10811	5994	1845	1708	2897	1731	3484	4753
26	1975	12875	6561	1929	2225	4035	2661	4020	5342
27	1976	17252	7523	2332	2194	4757	2097	4876	6838
28	1970	14027	6598	2005	2365	4448	2847	4283	6289
29	1977	13657	6711	1978	2332	4333	2814	4201	5635
30	1978	16844	8882	2282	2262	4787	2295	4812	5621
31	1979	11896	6174	1880	2022	3783	2743	3448	4638
32	1981	15051	8190	2469	2401	5498	4523	4362	5178
33	1981	13233	5941	1893	1996	4221	2920	4349	6126
34	1983	13055	6193	1907	2609	4176	2630	4258	5706
35	1984	13113	6711	1728	2609	4710	3866	4188	4964
	1985	11984	6266	1899	2625	4138	3311	3634	4663
36 37	1986	12474	6193	2044	2488	3791	2591	3646	5004
38	1987	11595	6320	2638	2374	3770	2829	3467	5192
39	1988	13902	7444	1907	2609	4750	3632	3665	4832
40	1989	13902	6900	1789	2185	4516	3224	4343	5579
	1990	11626	5943	1592	2330	3933	2450	3912	4938
41 42	1990	16081	8527	2044	3608	6485	3708	4788	5663
43	1992	10490	4958	1384	2020	3411	1985	3490	4694
43	1992	14540	7066	1713	2695	4526	2643	4736	6419
45	1993	17576	8380	2478	2599	4900	2750	4751	6855
46	1995 1996	13214	7066	1947	3518	5162	3766	3761	5240 5705
47		14614 11659	7721 6124	1996 2478	3300 2361	5609	3184 2707	4906 3485	5705 4924
48	1997					3563		3485 4006	
49	1998	13573	7400	2044	3314	4763	4168		5185
50	1999	15523	7741	2118	3393	5481	3966	4427	5577
51	2000	14842	8006	2177	2599	5566	3925	5136	6390
<u>52</u>	2001	10872	5346	1585	1487	3019	1965	3999	4735
53	2002	14975	7105	2012	2294	4202	3192	4980	6037
54	2003	11729	6401	1876	2342	3586	2895	4172	5535
55	2004	14081	7700	1774	2656	5337	3149	4158	5950

Tabla 8. Parámetros estadísticos originales (-O)y las series extendidas (-E) por correlación

ESTACION	\bar{Q} - O		σ- 0	σ - E	C _V -	C _V -	C _s -	C _s -
AREKUNA	6889	6521	886	1009	0,13	0,15	0,21	1,89
CANAIMA	1979	1969	306	221	0,15	0,11	0,47	1,74
KARUAIKEN	2609	2327	521	463	0,20	0,20	0,31	0,42
GURI	13207	13207	1789	1789	0,14	0,14	0,42	-1,47
CAPAURA	4516	4181	844	825	0,19	0,20	0,37	-0,06
ARIPICHI	3149	2743	661	685	0,21	0,25	0,20	0,02
KARUN	4163	4087	516	467	0,12	0,11	0,24	0,59
AURAIMA	5521	5400	643	560	0,12	0,10	0,58	1,26

Figura 1. Límites de confianza para el análisis de homogeneidad hidrológica y resultados de dicho análisis sobre la homogeneidad de la Región

Tabla 9. Determinación del Periodo de Retorno Teórico y del Registro Efectivo (Te, Ne)

					TE			
Estación	Q 2,33	Q10	Q10/Q2,33	Q 10	Tr	NºDatos	N°Relleno	Ne
Caroní en Arekuna	6598	8100	1,23	7878	8,33	39	16	47
Carrao en Canaima	1953	2200	1,13	2332	21	24	31	39,5
Caroní en	2330	2767	1,19	2782	10,025	23	32	39
Capaura	4243	5333	1,26	5066	6,5	25	30	40
Caroní en Aripichi	2766	3600	1,30	3302	5,67	25	30	40
Paragua en Karún	4158	4800	1,15	4964	15	25	30	40
Paragua en	5400	6200	1,15	6447	17	29	26	42
Caroní en Guri	13345	15333	1,15	15933	15,67	55	0	55
		•	1.19			•	•	•

Tabla 10. Proceso de deducción de la Curva de Frecuencia Regional para la Región y de las Relaciones QT/Q2,33

			T=5		T=10		Γ=20	7	<u>~=50</u>	7	Γ=100
Estación	Q	Q 5	Q5/ Q2,33	Q10	Q10/Q2,33	Q20	Q20/Q2,33	Q50	Q50/Q2,33	Q100	Q100/Q2,33
Caroní en Arekuna	6598	7350	1,11	8100	1,23	8775	1,33	9600	1,45	10240	1,55
Carrao en Canaima	1953	2100	1,08	2200	1,13	2329	1,19	2450	1,25	2550	1,31
Caroní en Karuaiken	2330	2567	1,10	2767	1,19	2971	1,28	3229	1,39	3433	1,47
Capaura	4243	4850	1,14	5333	1,26	5800	1,37	6400	1,51	6860	1,62
Caroní en Aripichi	2766	3229	1,17	3600	1,30	4000	1,45	4467	1,61	4850	1,75
Paragua en Karún	4158	4500	1,08	4800	1,15	5100	1,23	5500	1,32	5800	1,39
Paragua en Auraima	5400	5850	1,08	6200	1,15	6600	1,22	7025	1,30	7400	1,37
Caroní en Guri	13345	14500	1,09	15333	1,15	16234	1,22	17438	1,31	18313	1,37
			1,11		1,19		1,28		1,39		1,48

Tabla 11. Resultados del Análisis de Frecuencia de los caudales máximos diarios en las ocho estaciones y para los cinco modelos probabilísticas.

pabilisticas.	ETINGTON			T		
ESTACION	FUNCION	2.33	5	10	25	50
AREKUNA		6703	7379	7800	8300	8600
CANAIMA		2009	2157	2250	2300	2400
KARUAIKEN		2410	2721	2940	3100	3200
GURI	NORMAL	13529	14728	15600	16400	16900
CAPAURA	NORWAL	4330	4882	5280	5600	5900
ARIPICHI		2866	3325	3660	3900	4180
KARUN		4171	4484	4700	4920	5060
AURAIMA		5501	5876	6150	6400	6570
AREKUNA		6628	7364	7950	8540	8960
CANAIMA		1996	2149	2260	2380	2460
KARUAIKEN		2367	2709	2990	3200	3400
GURI	LOG-NORMAL	13411	14676	15600	16600	17300
CAPAURA	LOG-NORWAL	4255	4913	5400	6020	6400
ARIPICHI		2790	3429	3980	4590	5030
KARUN		4145	4475	4730	4900	5160
AURAIMA		5472	5858	6150	6400	6650
AREKUNA		6524	7263	7930	8670	9220
CANAIMA		1970	2131	2270	2440	2560
KARUAIKEN	-	2328	2667	2970	3300	3560
GURI	CLIMBEI	13212	14523	15700	17000	18000
CAPAURA	GUMBEL	4183	4788	5330	5940	6390
ARIPICHI		2745	3247	3690	4200	4580
KARUN		4688	4430	4700	5080	5330
AURAIMA		5401	5812	6180	6590	6900
AREKUNA			7156	7930	8840	9530
CANAIMA	1		2113	2270	2460	2600
KARUAIKEN	1		2568	2850	3180	3430
GURI	DEADCON		14405	15680	17170	18300
CAPAURA	PEARSON	4426	4797	5170	5600	5930
ARIPICHI		2947	3255	3560	3920	4200
KARUN			4276	4580	4960	5260
AURAIMA		5405	5784	6150	6600	6940
AREKUNA		6709	7243	7810	8550	9150
CANAIMA		2013	2124	2230	2380	2500
KARUAIKEN		2373	2615	2900	3360	3700
GURI	LOG-PEARSON	13588	14472	15400	16600	17560
CAPAURA	LOG-LEAKSON	4103	4743	5490	6500	7400
ARIPICHI			3150	4080	5500	6900
KARUN		4191	4422	4650	4960	5200
AURAIMA		5491	5792	6100	6500	6800

	Caroní	Carrao	Caroní en	Caroní		Caroní	Paragua	Paragua
Modelo	en Arekuna	en Canaima	Karuaiken	en Guri	Capaura	en Aripichi	en Karún	en Auraima
Normal	8,92	2,76	5,13	0,62	1,98	7,42	0,32	0,38
Log-Normal	7,96	0,1	1,11	3,91	11,01	1,43	0,84	0,38
Gumbel I	0,78	0,63	0,03	0,86	1,43	0,47	0,77	1,37
Pearson III	57,9	8,42	36,66	84,63	7,34	17,52	20,68	20,03
Log-Pearson III	30,89	0,82	6,24	20,17	72,12	274,11	51,96	1,56
Grado de libertad = m-p-1	52	52	52	52	52	52	52	52
χ^2 -teórico con $\alpha = 0.05$	69,752	69,752	69,752	69,752	69,752	69,752	69,752	69,752
χ^2 -teórico con α =0,01	78,504	78,504	78,504	78,504	78,504	78,504	78,504	78,504

Valores menores que χ^2 teórico ambos niveles Valores menores que χ^2 teórico a 0,01 Valores menores que χ^2 teórico a 0,05

Tabla 12. Resultados de la prueba χ^2 para determinar el grado de ajuste de los modelos probabilísticas utilizados en el análisis de frecuencias de los caudales máximos en la cuenca del Caroní.

6. CONCLUSIONES Y RECOMENDACIONES

Sobre la base de los resultados obtenidos en el presente estudio se pueden extraer las siguientes conclusiones y recomendaciones:

- La cuenca del Caroní es la que dispone de información hidrométrica más larga y confiable en el país, por lo que se presta para llevar a cabo estudios hidrológica cuyos resultados pueden servir para otras regiones de Venezuela.
- La cuenca del Caroní muestra un comportamiento hidrológicamente homogéneo, permitiendo desarrollar modelos hidrológicos regionales que bien pueden usarse como representativos de toda la zona sur del país.
- A juzgar por la prueba Chi- Cuadrado, los cinco modelos probabilísticas utilizados para el análisis de frecuencia de los caudales máximos en la cuenca del Caroní, se muestran igualmente aplicables. Sin embargo, la distribución de valores extremos tipo I de Gumbel podría seleccionarse como método estándar para dicho análisis, ya que ha presentado los valores de Chi-Cuadrado más bajos.
- El caudal máximo medio muestra una relación estrecha con el área de la cuenca, lo cual permite su estimación en otras subcuencas carentes de información hidrométrica.
- La curva de frecuencias compuesta que se ha desarrollado en este estudio puede utilizarse para

- estudios preliminares en otras subcuencas del Carona, con la misma precisión de este estudio.
- Se recomienda actualizar y revisar los resultados cuando se disponga de mayor información.
- La extrapolación de los resultados de este estudio a otras regiones del país requiere de una evaluación previa de la información básica disponible y una comprobación de los modelos desarrollados.
- Se recomienda acometer el mismo tipo de investigación en otras regiones del país.

Reconocimiento: La investigación que ha dado origen a la presente publicación ha sido financiada por el Consejo de Desarrollo Científico y Humanístico de la Universidad de Carabobo (CDCH UC). Se expresa aquí un especial reconocimiento a ese soporte financiero.

7. REFERENCIAS

Albano, L. (2006): "Modelación de caudales máximos en Venezuela. Caso de estudio cuenca del río Carona". Trabajo de grado para obtener el título de Magíster en Ingeniería Ambiental. Universidad de Carabobo.

Albano L. y E. Guevara (2006): "Análisis de frecuencias de caudales máximos aplicados a la cuenca del río Caroní". XXII Congreso Latinoamericano de Ingeniería Hidráulica. Pto. Ordaz, Venezuela. Septiembre 2006.

- Benson, M. A. (1960): "Characteristics of Frequency Curves based on a Theoretical 1000 Year Record", USGS, Water Supply Paper No. 1543-A, pp 51-73.
- Benson, M. A. (1968): "Uniform Flood Frequency Estimating for Federal Agencies". WRR, Vol 4. No. 5. pp 891-908.Methods
- Benjamín, J. R. and C. A. Cornell (1970): "Probability, Statistics, and Decision for Civil Engendering". MacGraw Hill, Inc. San Francisco.
- Cermeño, Rubén, (1990): "Métodos Estadísticos Aplicados a la Hidrología". Universidad de Carabobo.
- Chow, V. T (1964): "Handbook of Applied Hydrology". Mac Graw Hill. New York.
- Dalrymple, T. (1960): "Flood Frequency Analysis". USGS, WSP No. 1543-A, pp 1-47.
- Guevara, E. y H. Cartaza (2004): "Hidrología Ambiental". CDCH-UC. Universidad de Carabobo, Valencia, Venezuela.
- Guevara, E. (2006): "Análisis de frecuencia y riesgo en hidrología". Manuscrito Dirección General de Postgrado, Universidad de Carabobo.
- Gumbel, E. J. (1958): Statistics of Extremes. Columbia University Press.
- Kite, W. W. (1977): Frequency and Risk Analysis. WRP. Fort Collins, Co, USA.
- Maidment, D.R. ed. (1992): Handbook of Hydrology. McGraw Hill Book Company. N. Y. New York
- Melendez, S. (1985): Análisis de Frecuencia de Caudales extremos en la región Centro-Occidental de Venezuela". Universidad de Carabobo.
- USWRC (United Satates Water Resources Council) (1967): A Uniform Technique for determining Flood Flow Frequencies, Hydrol. Comm. Bull. No 15.
- Yevjevich, V. (1972): Probability and Statistics in Hydrology. WRP. Fort Collins, Colorado USA.
- Yevjevich, V. (1972): Stochastic Processes in Hydrology. WRP. Fort Collins, Colorado USA.