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Resumen 
 

Un enfoque propuesto recientemente que enmarca control de modos deslizantes de sistemas lineales dentro de 
un contexto de control clásico entrada/salida (Sira-Ramírez [8]), es usado aqui para la estabilización entrada-salida 
modo deslizante  de un convertidor de potencia DC-DC tipo ‘‘buck’’. El enfoque evade mediciones de estado y 
evita el uso explícito de observadores asintóticos de estado en la síntesis de la superficie deslizante. El esquema 
propuesto es también robusto con respecto a entradas de perturbación ‘‘unmatched’’. Se  resalta  la conexión entre 
moduladores-∆ clásicos y los de modos deslizantes como una herramienta para la realización de esquemas de con-
trol deslizantes en sistemas comandados por un interruptor de posición donde un diseño de control de realimenta-
ción promedio deseable requiere ser implementado. 

 

Palabras Claves: Control PI generalizado, Control de Modo Deslizante, Moduladores Delta. 
 

Sliding mode-∆ modulation control of a “buck” converter 
 

Abstract 
 

A recently proposed approach that sets sliding mode control of linear systems within a classical input-output 
control framework (Sira-Ramírez [8]), is here used for the input-output sliding mode stabilization of “buck” DC-to-
DC Power Converter. The approach evades state measurements and circumvents the explicit use of asymptotic state 
observers in the sliding surface synthesis. The proposed scheme is also robust with respect to unmatched perturba-
tion inputs. A connection between sliding modes and classical ∆-modulators is also brought to attention as a tool 
for the realization of sliding mode control schemes in systems commanded by a switch position where a desirable 
average feedback controller design needs to be implemented.   

 

Key words: Generalized PI control, Sliding Mode Control, Delta-modulators. 

1. INTRODUCTION 
 

The many advantages of sliding mode control are 
well reported, founded, and illustrated, in the existing 
literature. The sliding mode control technique is, fun-
damentally, a state space-based discontinuous feedback 
control technique. The lack of complete knowledge of 
the state vector components forces the designer to use 
asymptotic state observers, of the Luenberger, or of the 
sliding mode type, or perhaps to resort to direct output 
feedback control schemes. Unfortunately, the first ap-
proach is not robust with respect to unforseen exoge-
nous perturbation inputs, even if they happen to be of 
the “classical type” (by this we mean: steps, ramps, 
parabolas, etc). The second approach is quite limited in 
nature and it is not applicable in a host of non-

minimum phase systems. Generally speaking, state 
space based sliding mode techniques fail in the un-
matched perturbation input case. For general back-
ground on sliding mode control, we refer the reader to 
the seminal books by Utkin [11], [12], the recent books 
by Utkin, Guldner and Shi [13] and that by Edwards 
and Spurgeon [1]. Recent developments, advances and 
applications of the sliding mode control area are found 
in the book by Perruquetti and Barbot [4].  

 
In this article, we propose a new approach for the 

synthesis of sliding mode feedback control schemes for 
linear, time invariant, controllable and observable   
Single Input Single Output (SISO) systems, for    
which    an  average   controller    design  is   assumed           
to  be   available. We  show   that the   use  of  classical  
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? -modulators  allows for the switched synthesis of a 
feedback controller which has been synthesized within 
an average context (i.e. assuming that the control input 
continuously takes values on a closed subset of the real 
line, usually restricted to be the closed interval [0 1], ). 
A complete account of  ? -modulators, extensively used 
in analog signal encoding, which never benefited from 
the theoretical basis of sliding mode control, is found in 
the classical book by Steele [10]. 
 

We show that a ? -modulator can be used to 
translate such a continuous design into a discontinuous 
one with the property that the “equivalent output” 
signal of the modulator, in an ideal sliding mode sense, 
precisely matches the modulator’s input signal. 

 

When we combine ? -modulation with integral 
reconstructors of the system state vector and 
Generalized Proportional Integral (GPI) control, the 
result is that the required sliding motion is dynamically 
synthesized using only the input and the output of the 
system while retaining the essential robustness features 
of the average devised GPI controller. 
  

Integral reconstructors were introduced in the work 
of Fliess [2], within the realm of continuous dynamic 
input output GPI feedback strategies. A complete 
theoretical account of integral reconstructions and GPI 
control has been presented in a recent article by Fliess 
et al [3]. In a rather different context than the one here 
presented, in [6], use is made of integral reconstructors 
in the synthesis of traditional inductor current based 
sliding surface for the boost converter (i.e. a minimum 
phase sliding surface coordinate function). A more 
complete set of Power Converters is also treated, from 
that viewpoint, [9]. Integral reconstructors require only 
inputs, outputs and iterated integrals of such signals for 
their synthesis, while neglecting the influence of the 
constant, but unknown, initial conditions and the effect 
of classical additive perturbation inputs. These effects 
are later counteracted by additional appropriate iterated 
integral error feedback in the controller expression. 
Hence, our approach is, fundamentally, an input-output 
approach which emphasizes the synthesis of an 
adequate continuous (average) feedback law, rather 
than the synthesis of a sliding surface. The use of GPI 
controllers in the average feedback controller design 
naturally leads to dynamic input-output feedback 
schemes for the synthesis of the sliding motion. As an 
outcome, the scheme here presented requires no 
“matching conditions” whatsoever.  

Section 2 presents a review of the simplest analog 
? -modulator and its connection with sliding mode 
control schemes when the actual system input signal 
takes values in a discrete set of the “ON-OFF" form, 
i.e. in the discrete set {0 1}, . Section 3 deals with some 
generalities on how to synthesize a sliding mode 
controller on the basis of a given continuous feedback 
controller design. Section 4 concentrates on a direct 
application of ? -modulators in the implementation of a 
continuous Generalized PI controller for a “buck” 
converter model. Section 5 deals with the conclusions 
of the article. 
 

2. ? -MODULATORS 
 

Consider the basic block diagram of Figure 1 
reminiscent of a ? -modulator block but with a binary 
valued forward nonlinearity, taking values in the 
discrete set {0 1}, . For ease of reference we address 
such a block simply as a ? -Modulator. The following 
theorem summarizes the relation of the depicted 
? -modulator with sliding mode control while 
establishing the basic features of its input output 
performance.  
 

Theorem 2.1:  Consider the ? -modulator of Figure 
1. Given a bounded 1C  signal ( )tξ , with bounded first 
order time derivative, ξ& , then the locally decoded 
feedback signal ( )x t  satisfies the convergence 
property: ( ) ( )x t tξ→ , in a finite  amount  of  time hT , 

 
Figure 1. Switch position based ? -modulator. 
 
provided the following encoding condition is satisfied 
for all t ,  
 

                           0 ( ) 1tξ< <&                                 (2.1) 
 

Moreover, from any arbitrary initial value of the 
tracking, or encoding, error 0 0 0( ) ( ) ( )e t x t tξ= − , a 
sliding motion exists on the perfect encoding condition  
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0e =  for all hTt > , where the quantity hT  is 
bounded by hT T≤ , with T  satisfying, 
 

           0
0

2 ( )
( )

e t
T t

r t
| |

≤ +  

             0( ) (1 sup{ ( )})(1 sign( ( )))r t t e tξ= − +&  
 

         0(inf ( ))(1 sign( ( )))t e tξ+ −&                    (2.2) 
 
Proof. From the figure, the variables in the ? -modulator 
satisfy the following relations:  

 
                     x u=&                   

                     [ ]1

2
1 sign( )u xξ= + −                                            

                     e xξ= −                                             (2.3) 
 

Clearly, [ ]1
2( ) 1 sign ( )e t eξ= − +&&  and since ( )tξ&  is 

assumed to be bounded within the interval [0 1], , we 
have:  

( )
1 1
2 2

ee e t e eξ= − − | |&&                                                                                                                                          

( )[ ]1
1 2 ( ) 1 sign ( )

2
e t eξ=− | | − −&                                 

1
0

2
e≤ − | |<                                   (2.4) 

 
A sliding regime exists on 0e =  for all time t  after 

the hitting time hT  (see [11]). Under ideal sliding, or 
encoding, conditions, 0 0e e= , =& , we have that 

( )x tξ=  and the equivalent (average) value of the 
coded output signal u  is given by ( )equ tξ= &  for all 
t Th≥ . The estimation of the hitting time hT  is based 
on the integrable error equation obtained for the most 
unfavorable case of the input ξ&  in the error equation 
for each possible sign of the initial condition. Thus, if 

0 0( )e t >  then we consider as the error dynamics: 
sup{ } 1e ξ= −&& , which yields at the hitting time hT , 

  
        ( )he T = 0 0 0( ) (1 sup{ ( )})( )he t t T tξ− − − = ⇒&  

             ( )
( )

0
0 1 sup{ }h

e t
t

t
T

x
= +

- &  

 
While if 0 0( )e t < , then we consider as the error 

dynamics inf{ }e ξ= && .  This yields, at  the  hitting  time,  

              ( )he T = 0 0 0( ) inf{ }( )he t T tξ+ − = ⇒&  
 

                  
( )

{ ( ) }

( )

( ) }{ t
tet

t
tetTh ξξ && infinf

0
0

0
0 +=−=  

  
The result (2.2) follows by combining these two 

worst case estimates for the hitting time into a single 
formula which takes into account the sign of the initial 
condition 0( )e t .  
          � 
  

The ? -modulator output u  ideally yields the time 
differentiation of the modulator input signal ( )tξ  in an 
equivalent control sense [11], i.e. in an average sense. 
The role of the  above  described  ? -modulator in 
sliding mode control schemes, avoiding full state 
measurements, and using average based controllers will 
be clear from the examples presented below.  
 

3. USE OF A DELTA MODULATOR IN 
SLIDING MODE CONTROL 
IMPLEMENTATION OF AN  

AVERAGE CONTROLLER DESIGN 
 

Suppose we have a smooth nonlinear system of the 
form ( ) ( )x f x ug x= +&  with u  being a (continuous) 
control input signal that, for some physical limitations, 
requires to be bounded by the closed interval [0 1], . 
Suppose, furthermore, that we have been able to 
specify a state feedback controller of the form 

( )u k x= − , or a dynamic output feedback controller of 
the form ( ) ( )u y yκ ζ ζ ϕ ζ= − , , = ,& , with desirable closed 
loop performance features. Assume, furthermore, that 
for any initial state of the system (and of the dynamic 
controller, if such is the case), the values of the 
feedback signal function, ( )u t , are uniformly strictly 
bounded by the closed interval [0 1], . 
  

If an additional implementation requirement entitles 
now that the control input u  of the system is no longer 
allowed to continuously take values within the interval 
[0 1], , but that it may only take values in the discrete 
set, {0 1}, , the natural question is: how can we now 
implement the derived continuous controller, so that we 
can recover, possibly in an average sense, the desirable 
features of the derived static, or dynamic, feedback 
controller design in view of the last imposed actuator 
restriction?  
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        Figure 2.   Sliding  mode  implementation  of  a  
       designed continuous output feedback controller 
       through a ? -modulator. 
 

The answer is clearly given by the average 
differentiating features of the input signals in the 
previously considered ? -modulator. Recall, 
incidentally, that the output signal of such a modulator 
is restricted to take values, precisely, in the discrete set 
{0 1}, . Thus, if the time integral of the output of the 
designed continuous controller, call it ( )avu t , is fed into 
the proposed Delta modulator, the output signal of the 
modulator reproduces, on the average, the required 
control signal avu . Figure 2 shows the switch based 
implementation of an output feedback controller, 
through a ? -modulator, which reproduces, in an 
average sense, the features of a designed continuous 
controller. Note that the presence of an integral in the 
feedback loop of  the  ? -modulator and the requirement 
of the integral of the designed average control signal at 
the input of the modulator produces the following 
equivalence entitling a single integration placed before 
the sign function (see Figure 3). We have the following 
alternative equations for the delta modulator when the 
input signal ξ  is to be reproduced at the output of the 
modulator in an average, equivalent control, sense.  
                     
                                e uξ= −  

                                [ ]1

2
1 signu z= +  

                     z e=&                                  (3.1) 
 
We have the following proposition. 
 

Theorem 3.1: Consider the modified   ? -modulator 
of Figure 3. Given a bounded signal ( )tξ , then the 
integral tracking error z  converges to zero in a finite 
amount of time hT , provided the following encoding 

condition is satisfied for all t ,  
 

                  ( )0 1tξ< <                           (3.2) 
                                                                                                         

 
 

  Figure 3. Equivalence of ? -modulator schemes 
      for average control  law implementation. 
 

Moreover, a sliding motion exists on the perfect 
encoding condition 0z =  for all hTt > , where hT T£ , 
with T satisfying,  
 

                       0
0

( )

( )

2 z t
T t

r t
| |

≤ +  

                    0( ) ( ) ( )(1 sup{ })(1 sign( ))r t t z tξ= − +  

0( )(inf ( ))(1 sign( ))t z tξ+ −             (3.3) 
 

Proof. From the modified modulator equations (3.1), 
we have   

            [ ]1
( ) 1 sign ( )

2
dz

t z
dt

ξ= − +                           (3.4) 

 
and therefore  
             [ ]1

1 (1 2 ( )) ( )
2

signt zzz z ξ= − | | + −&                (3.5) 
 

Clearly, for ( )tξ  being a bounded signal in the 
open interval (0 1), , it follows that 0zz <& , and a sliding 
regime exists on 0z = . Under ideal sliding motions, 
the conditions: 0z = ,  0/dz dt =  are valid. This implies 
that, on the average, ( ) ( )t u tξ = , i.e. the output of the 
modified modulator reproduces, in an equivalent 
control sense, the input to the modulator. The finite 
time reachability of the sliding surface 0z =  is 
established in a similar manner as in the previous 
theorem.  
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In view of the previous result, we have the 
following general result concerning the control of 
nonlinear systems through sliding modes synthesized 
on the basis of an average feedback controller and a Δ-
modulator. We only deal with the dynamic output 
feedback controller case. 
  

Theorem 3.2: Consider the following smooth 
nonlinear single input, n-dimensional system: 

( ) ( )x f x ug x= +& , with the smooth scalar output map, 
( )xhy = . Assume the dynamic smooth output 

feedback controller ( , ), ( , )u k y yζ ζ ϕ ζ= − =& , with 
pRζ ∈ , locally (globally)  asymptotically  stabilizes 

the system to a desired constant equilibrium state,  
denoted by X . Assume,  furthermore, that the control 
signal, u , is uniformly  strictly bounded by the  closed  
interval [0,1] of the  real  line. Then the closed loop 
system:  
 

                               ( ) ( )xugxfx +=&  
                               ( )xhy =  
                  ( ) ( )ζκζ ,, yyuav −=  

                              ( )ζϕζ ,y=&  

                               [ ]1

2
1 signu z= +  

                              ( ),avz u y uζ= −&  
 

exhibits an ideal sliding dynamics which is locally 
(globally) asymptotically stable to the same constant 
state equilibrium point, X , of the system.  
 

Proof. The proof of this theorem is immediate upon 
realizing that under the hypothesis on the average 
control input, avu , the previous theorem establishes that 
a sliding regime exists on the manifold 0=z . Under 
the invariance conditions, 0=z , 0=z& , which 
characterize ideal sliding motions (See Sira-Ramírez 
[5]), the corresponding equivalent control, equ , 
associated, with the system satisfies: ( ) ( )tutu aveq = . 
The ideal sliding dynamics is then represented by 
 

                           ( ) ( )xguxfx av+=&  
                           ( )xhy =  
               ( ) ( )ζκζ ,, yyuav −=  

                          ( )ζϕζ ,y=&  
 

which is assumed to be locally (globally) 
asymptotically stable towards the desired equilibrium 
point.  

4. CONTROL OF A “BUCK”  
CONVERTER CIRCUIT 

 
A.  The “buck” converter model, its average model and a PD 
controller. 
 

Consider the “buck” converter circuit shown in 
Figure 4. The system is described by the set of 
equations  
 
                                        Li v uE= − +&  

                          
v

Cv i
R

= −&                         (4.1) 

                                                                                           
where i represents the inductor current and v  is the 

output capacitor voltage. The control input u,  
representing the switch position function, is a discrete-
valued signal taking values in the set {0,1}. The system 
parameters are constituted by: L , which is the 
inductance of the input circuit; C,  the capacitance of 
the output filter and R , the output load resistance. The 
external voltage source has the constant value E . We 
assume that the circuit is in continuous conduction 
mode, i.e. the average value of the inductor current 
never drops to zero, due to load variations.   

          
        Figure 4. Switch regulated DC-to-DC “buck” 
        power converter. 
  

We introduce the following state normalization and 
time scale transformation:  
 

    
C

L

E

i
x =1 ,  

E
vx =2 ,    

LC
t

=τ                    (4.2) 

 
The normalized model is thus given by:  
 

                                 1 2x x u= − +&  

                   2
2 1

x
x x

Q
= −&                                (4.3) 

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com


 

12   Rev. INGENIERIA UC. Vol. 10, No  1, Abril  2003 

                   Control modo deslizante-∆ modulación  

where now, with an abuse of notation, the “ . ”  
represents derivation with respect to the normalized 
time,τ . The variable 1x  is the normalized inductor 
current, 2x  is the normalized output voltage and u , 
still represents the switch position function. The 
constant system parameters are all comprised now in 
the circuit “quality” parameter, denoted by Q  and 
given by the strictly positive quantity, R C L . We 
assume that only the (normalized) output capacitor 
voltage, 2xy = ,  is available for measurement.  
 

In order to obtain a suitable average controller, 
assume for a moment that the normalized “buck” 
converter equations actually represent a continuous 
system (i.e. an average system) where u  may take 
values in the closed interval [0,1]. Take the normalized 
“average output" capacitor voltage, 2x , as the system 
output, i.e. 2xy = . Elimination of the normalized 
“average inductor current” variable 1x  leads to the 
following input-output differential relation,  
 

                       1+ + =&& &y y y u
Q

                     (4.4) 

 
Clearly, the system, aside from being a stable 

system, it also has no zero dynamics associated with 
y& . Suppose we want to devise a controller that 
asymptotically regulates the output voltage to the 
desired “average” value y . Corresponding to this 
desired normalized constant equilibrium value, we have 
from (4.4)  u y= . 
 

Consider then, the following PD stabilizing 
feedback controller with nominal input compensation,  
 

      ( ) ( )( )yykyk
Q

uu −−+−+= 12 1
1

&         (4.5) 

 

The tracking error, yye −= , is clearly seen to satisfy 
the following closed loop dynamics  
 

                 2 1 0e k e k e+ + =&& &                         (4.6) 
 
By appropriate choice of the design parameters 2k , 1k , 
the origin of the error space coordinate, e , can be made 
into a locally asymptotically exponentially stable 
equilibrium point determined by the non-saturation 
condition.  

         2 1
1

0 (1 )( ) 1u k y k y y
Q

< + − + − − <
 
 
  &      (4.7) 

B. An average Generalized PI (GPI) control for the “buck” 
converter. 

The PD controller (4.5) requires the time derivative 
of the output signal y . A GPI controller can then be 
proposed which substitutes the unmeasured signal y&  
by its integral reconstructor, denoted by ( )ey& . Such a 
reconstructor, is obtained by direct integration of the 
input output relation (4.4), while neglecting the 
unknown initial condition  0y& . We have,    
 

         
0

1
( ) ( ( ))

t

ey y y d
Q

s s= - -ò&            (4.8) 

 

The use of ( )ey&  in the PD controller, instead of y& , 
produces a constant error due to the unaccounted 
relation,  ( ) 0y y ye= +& & & . An integral control corrective 
action is then added to the proposed controller (4.5), in 
order to counteract the conscientious neglect of the 
unknown initial condition. We propose then the 
following average dynamic GPI feedback controller, 
 

             +=u u 2

1
( )ek y

Q
æ ö÷ç - ÷ç ÷çè ø

& 1(1 )( )k y y+ − −  

                  0 0
( ( ) )tk y y ds s+ -ò  

        
0

1
( )( ) ( )

t
y y y

Q
u de s s= - - -ò&                 (4.9) 

 

The closed loop system stabilization error dynamics 
satisfies the following linear integro-differential 
equation excited by an unknown constant. 
              

      1 0
0

0 2
1

( )
t

ë k e k e d k y
Q

s s é ù+ + = -ê úê úë ûò& &          (4.10) 

 
                          

Figure 5.   Average system response to continuous 
(average) GPI feedback controller design. 
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It is not difficult to verify that such a closed loop 
dynamics has the origin as an asymptotically 
exponentially stable equilibrium point for a suitable set 
of design parameters ., 0,12 kkk  Indeed, define a new 
state ξ   by means of  

 

        ( )
00

0
2

1 1
t

k y
k Q

dex s s
æ ö÷ç= - - ÷ç ÷÷çè øò &           (4.11) 

 
The closed loop system is then equivalent to the 

following composite linear system,  
 
  1 0 0e k e k ξ+ + =&& &  

                  ( )eξ σ=& ,  2 0
0

1 1
(0) k y

k Q
ξ = − −

 
 
 

&  

 
Clearly, the characteristic polynomial of the closed 

loop system is given by  
 

          3 2
2 1 0( )p s s k s k s k= + + +               (4.12) 

 
Figure 5 shows some computer simulations of the 

closed loop response of the non normalized converter 
system variables v, i, to the actions of the proposed 
average GPI controller. The controller design 
parameters k2, k1, k0, were chosen so that the average 
control input uav  never saturates to values outside the 
interval [0,1]. For this, we set: 

3
0

2
12 ,3,3 pkpkpk ===  with 4.0=p , in the 

normalized system simulations. The converter 
parameters were taken to be. 
 
        [ ],310 HL −=       [ ],610 FaradC −=  
        [ ],30 OhmR =       [ ]VE 15=  
 

For these parameters, the time normalization factor 
is found to be 5101622.3 −= xLC  

 
C. GPI-sliding mode control of the “buck” converter 
implemented through a ∆-modulator. 
 

Based on the presented justifications, we propose to 
implement the GPI controller (4.9) on the “buck” 
power converter by means of a ∆-modulator, as 
previously discussed.  
               
 

                   ( )( )zsignu += 1
2

1
 

 
                   avz e u u= = −&  
 

                                   

+=avu u 2

1
( )ek y

Q
æ ö÷ç - ÷ç ÷çè ø

& 1(1 )( )k y y+ − −  
 

                    
0

0 ( ( ) )
t

k y y ds s+ -ò  

 

             
0

1
( ) ( ( ) )

t

e uy y y d
Q

s s= - - -ò&  

                           
Under ideal sliding conditions on the sliding 

surface, 0=z , the corresponding dynamics is precisely 
represented by the condition avuu = . The stability 
analysis carried out for the closed loop behavior of the 
average system under a GPI controller thus becomes 
valid. The sliding mode controller results in the origin 
of the tracking error, -y y , to be an exponentially 
asymptotically stable equilibrium point for all motions 
that do not saturate the control input  ( )tuav  beyond the 
interval [ ]1,0 . 
  

Figure 6 shows computer simulations depicting the 
closed loop response of the system to the actions of the 
GPI controller implemented through a ∆-modulator. 
The controller design parameters and the system 
parameters were chosen to be exactly the same as those 
used in the previous simulation of the average GPI 
feedback controlled responses. In order to test the 
robustness of the ∆-modulator implementation of the 
proposed average GPI controller, we tested the system 
with an unmatched sudden constant perturbation, 
denoted by ( )τη −t1 , appearing at time 004.0=τ  [ ]s  
of value 6667.0=η [A]. i.e. we used the model:  
              

                      
                    uEviL +−=&  

 

                     )(1 τ−+−= tn
R
v

ivC &             (4.13) 
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        Figure 6. Closed loop response of  a  “buck”   to 
       converter to a ∆-modulator implementation a of 
       GPI stabilizing controller.  
 

 

 
Figure 7. Robustness of a Sliding mode-∆ modulator 
implementation of a GPI stabilizing controller acting on a 
“buck” converter undergoing an unmatched step perturbation 
input.  
 

Figure 7 shows computer simulations depicting the 
closed loop response and the recovery features of the 
implemented GPI-∆-modulation controller. Ideal 
sliding motions in traditional sliding mode control do 
not inherit the robustness features nor are they robust 
with respect to “unmatched” perturbations.  
 

5. CONCLUSIONS 
 

Average feedback controller designs usually 

represent the desirable equivalent control in sliding 
mode control implementations. The exact synthesis of 
the equivalent control is not physically possible in 
systems commanded by switches, and sign non-
linearities, such as in traditional, and double bridge, 
DC-to-DC power converters. Knowledge of the 
feedback law defining the equivalent control leads to 
consider a linear partial differential equation, for the 
sliding surface, stating that the closed loop vector field 
should be orthogonal to the sliding surface gradient. 
However, it is still not obvious how to synthesize a 
sliding surface, that corresponds to a given equivalent 
control, due to the indeterminacy, and arbitrariness, of 
the boundary conditions in the defining linear partial 
differential equation that needs to be solved.  
 

In this article, we have demonstrated that the use of 
classical ∆-modulators can solve the sliding mode 
implementation problem of average feedback 
controllers in a rather efficient manner. The proposed 
approach retains, in an average sense, the desirable 
features of the designed average feedback controller. 
When the proposed controllers are synthesized using 
only inputs and outputs, as in GPI control, the explicit 
asymptotic estimation of the state becomes unnecessary 
and, moreover, the matching conditions, intimately 
related to the state space representation of the system, 
are no longer needed. 
 

We have used the ∆-modulator implementation of a 
sliding mode controller for a given average GPI 
continuous controller in a “buck” DC-to-DC power 
converter. Other non-linear switched controlled 
systems may immediately benefit form the sliding 
mode feedback controller design framework based on 
∆-modulators and nonlinear output feedback controllers 
arising from current nonlinear systems theory (for 
instance, geometric, differential algebraic, flatness, 
passivity, energy methods, ∞Η , etc.). For DC-to-DC 
power converters, in particular, average passivity based 
output feedback controllers, such as those developed in 
[ ]7  may be readily implemented via sliding mode 
controllers in a direct fashion.  
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